If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2-50x+9=0
a = 45; b = -50; c = +9;
Δ = b2-4ac
Δ = -502-4·45·9
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-4\sqrt{55}}{2*45}=\frac{50-4\sqrt{55}}{90} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+4\sqrt{55}}{2*45}=\frac{50+4\sqrt{55}}{90} $
| 2x-4(x-5)=-3+2x-9 | | x=5+20 | | 7x-72=3x+40 | | √7-x=x-5 | | 5x+20=265 | | 6x-10+6x+10=`180 | | r-12=31 | | 3x-4+7x+14=180 | | 2x+6x=-2x-2 | | 4x+12=130 | | 0=0.2x^2-1.3x+3.4025 | | x+267=194 | | k=32.9=16.5 | | -74=n+17 | | 70+r=82 | | 15*x=225 | | |3w-4|=|3w-5| | | 5*x=225 | | 10x=35-5x | | 4r-18r=42 | | (3/4)x=2/3 | | (3/4)x-(2/3)=0 | | 6x-3=3-7x | | 4(2x-3)=(3+8x)-11 | | 6x^-15x+36=0 | | 7n-14=2n+6 | | 25+7x+5x=1 | | 7w=4w-21 | | 56x=896 | | 3x-4+7x=14 | | 6x^+18x+12=0 | | 6x^-18x+12=0 |